Covalent Compounds | manoa.hawaii.edu/ExploringOurFluidEarth (2024)

The number of bonds that an element can form is determined by the number of electrons in its valence shell (Fig. 2.29.1). Similarly, the number of electrons in the valence shell also determines ion formation. The octet rule applies for covalent bonding, with a total of eight electrons the most desirable number of unshared or shared electrons in the outer valence shell. For example, carbon has an atomic number of six, with two electrons in shell 1 and four electrons in shell 2, its valence shell (see Fig. 2.29.1). This means that carbon needs four electrons to achieve an octet. Carbon is represented with four unpaired electrons (see Fig. 2.29.1). If carbon can share four electrons with other atoms, its valence shell will be full.

Fig. 2.29.1. A periodic table showing electrons in the valence shells

Image by Byron Inouye

Most elements involved in covalent bonding need eight electrons to have a complete valence shell. One notable exception is hydrogen (H). Hydrogen can be considered to be in Group 1 or Group 17 because it has properties similar to both groups. Hydrogen can participate in both ionic and covalent bonding. When participating in covalent bonding, hydrogen only needs two electrons to have a full valence shell. As it has only one electron to start with, it can only make one bond.

ACTIVITY SHEET

Fig. 2.29.1 Period Table (printable version)

Fig. 2.30. Examples of single, double, and triple bonds (A) single bonds, H2 and Cl2 (B) double bonds, O2 and CO2 (C) triple bond, N2

Image by Byron Inouye

Single Bonds

Hydrogen is shown in Fig 2.28 with one electron. In the formation of a covalent hydrogen molecule, therefore, each hydrogen atom forms a single bond, producing a molecule with the formula H2. A single bond is defined as one covalent bond, or two shared electrons, between two atoms. A molecule can have multiple single bonds. For example, water, H2O, has two single bonds, one between each hydrogen atom and the oxygen atom (Fig. 2.29). Figure 2.30 A has additional examples of single bonds.

Double Bonds

Sometimes two covalent bonds are formed between two atoms by each atom sharing two electrons, for a total of four shared electrons. For example, in the formation of the oxygen molecule, each atom of oxygen forms two bonds to the other oxygen atom, producing the molecule O2. Similarly, in carbon dioxide (CO2), two double bonds are formed between the carbon and each of the two oxygen atoms (Fig. 2.30 B).

Triple Bonds

In some cases, three covalent bonds can be formed between two atoms. The most common gas in the atmosphere, nitrogen, is made of two nitrogen atoms bonded by a triple bond. Each nitrogen atom is able to share three electrons for a total of six shared electrons in the N2 molecule (Fig. 2.30 C).

Polyatomic Ions

In addition to elemental ions, there are polyatomic ions. Polyatomic ions are ions that are made up of two or more atoms held together by covalent bonds. Polyatomic ions can join with other polyatomic ions or elemental ions to form ionic compounds.

It is not easy to predict the name or charge of a polyatomic ion by looking at the formula. Polyatomic ions found in seawater are given in Table 2.10. Polyatomic ions bond with other ions in the same way that elemental ions bond, with electrostatic forces caused by oppositely charged ions holding the ions together in an ionic compound bond. Charges must still be balanced.

Table 2.10. Common polyatomic ions found in seawater
Polyatomic IonIon Name
NH4+ammonium
CO32-carbonate
HCO3-bicarbonate
NO2-nitrite
NO3-nitrate
OH-hydroxide
PO43-phosphate
HPO42-hydrogen phosphate
SiO32-silicate
SO32-sulfite
SO42-sulfate
HSO3-bisulfite

Fig. 2.31 shows how ionic compounds form from elemental ions and polyatomic ions. For example, in Fig. 2.31 A, it takes two K+ ions to balance the charge of one (SiO2)2- ion to form potassium silicate. In Figure 2.31 B, ammonium and nitrate ions have equal and opposite charges, so it takes one of each to form ammonium nitrate.

Fig. 2.31. (A) The formation potassium silicate

Image by Byron Inouye

Fig. 2.31.(B) The formation of ammonium nitrate

Image by Byron Inouye

Polyatomic ions can bond with monatomic ions or with other polyatomic ions to form compounds. In order to form neutral compounds, the total charges must be balanced.

Comparison of Ionic and Covalent Bonds

A molecule or compound is made when two or more atoms form a chemical bond that links them together. As we have seen, there are two types of bonds: ionic bonds and covalent bonds. In an ionic bond, the atoms are bound together by the electrostatic forces in the attraction between ions of opposite charge. Ionic bonds usually occur between metal and nonmetal ions. For example, sodium (Na), a metal, and chloride (Cl), a nonmetal, form an ionic bond to make NaCl. In a covalent bond, the atoms bond by sharing electrons. Covalent bonds usually occur between nonmetals. For example, in water (H2O) each hydrogen (H) and oxygen (O) share a pair of electrons to make a molecule of two hydrogen atoms single bonded to a single oxygen atom.

In general, ionic bonds occur between elements that are far apart on the periodic table. Covalent bonds occur between elements that are close together on the periodic table. Ionic compounds tend to be brittle in their solid form and have very high melting temperatures. Covalent compounds tend to be soft, and haverelatively low melting and boiling points. Water, a liquid composed of covalently bonded molecules, can also be used as a test substance for other ionic and covalently compounds. Ionic compounds tend to dissolve in water (e.g., sodium chloride, NaCl); covalent compounds sometimes dissolve well in water (e.g., hydrogen chloride, HCl), and sometimes do not (e.g., butane, C4H10). Properties of ionic and covalent compounds are listed in Table 2.11.

Table 2.11. Properties of ionic and covalent compounds
PropertyIonicCovalent
How bond is madeTransfer of e-Sharing of e-
Bond is betweenMetals and nonmetalsNonmetals
Position on periodic tableOpposite sidesClose together
Dissolve in water?YesVaries
ConsistencyBrittleSoft
Melting temperatureHighLow

The properties listed in Table 2.11 are exemplified by sodium chloride (NaCl) and chlorine gas (Cl2). Like other ionic compounds, sodium chloride (Fig. 2.32 A) contains a metal ion (sodium) and a nonmetal ion (chloride), is brittle, and has a high melting temperature. Chlorine gas (Fig. 2.32 B) is similar to other covalent compounds in that it is a nonmetal and has a very low melting temperature.

Fig. 2.32. (A) sodium chloride (NaCl), an ionic compound

Image courtesy of Edal Anton Lefterov from Wikipedia

Fig. 2.32.(B) chlorine gas (Cl2), a covalent compound

Image courtesy of Tomihahndorf from Wikipedia

Dissolving, Dissociating, and Diffusing

Ionic and covalent compounds also differ in what happens when they are placed in water, a common solvent. For example, when a crystal of sodium chloride is put into water, it may seem as though the crystal simply disappears. Three things are actually happening.

  1. A large crystal (Fig. 2.33 A) will dissolve, or break down into smaller and smaller pieces, until the pieces are too small to see (Fig. 2.33 B).
  2. At the same time, the ionic solid dissociates, or separates into its charged ions (Fig 2.33 C).
  3. Finally, the dissociated ions diffuse, or mix, throughout the water (Fig 2.34).

Image

Image caption

Fig 2.33. Dissolution and dissociation of sodium chloride. Sodium and chloride ions in (A) a large crystal, (B) dissolved in water as smaller crystals, and (C) dissociated in water.

Image copyright and source

Image by Byron Inouye

Ionic compounds like sodium chloride dissolve, dissociate, and diffuse. Covalent compounds, like sugar and food coloring, can dissolve and diffuse, but they do not dissociate. Fig. 2.34, is a time series of drops of food coloring diffusing in water. Without stirring, the food coloring will mix into the water through only the movement of the water and food coloring molecules.

Image

Image caption

Fig. 2.34. A time series of food coloring diffusing in water

Image copyright and source

Image by Jordan Wang

Dissociated sodium (Na+) and chloride (Cl-) ions in salt solutions can form new salt crystals (NaCl) as they become more concentrated in the solution. As water evaporates, the salt solution becomes more and more concentrated. Eventually, there is not enough water left to keep the sodium and chloride ions from interacting and joining together, so salt crystals form. This occurs naturally in places like salt evaporation ponds (Fig. 2.35 A), in coastal tidepools, or in hot landlocked areas (Fig. 2.35 B). Salt crystals can also be formed by evaporating seawater in a shallow dish, as in the Recovering Salts from Seawater Activity.

Fig. 2.35. (A) Salt evaporation ponds on the shores of San Francisco Bay

Image courtesy of Doc Searls

Fig. 2.35. (B) Salt crystals in Badwater Basin, the lowest point in North America in Death Valley National Park

Image courtesy of Arlene Philippoff

Covalent Compounds | manoa.hawaii.edu/ExploringOurFluidEarth (2024)
Top Articles
Latest Posts
Article information

Author: Laurine Ryan

Last Updated:

Views: 6589

Rating: 4.7 / 5 (57 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Laurine Ryan

Birthday: 1994-12-23

Address: Suite 751 871 Lissette Throughway, West Kittie, NH 41603

Phone: +2366831109631

Job: Sales Producer

Hobby: Creative writing, Motor sports, Do it yourself, Skateboarding, Coffee roasting, Calligraphy, Stand-up comedy

Introduction: My name is Laurine Ryan, I am a adorable, fair, graceful, spotless, gorgeous, homely, cooperative person who loves writing and wants to share my knowledge and understanding with you.