9.2: Inscribed angle (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    23634
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    We say that a triangle is inscribed in the circle \(\Gamma\) if all its vertices lie on \(\Gamma\).

    Theorem \(\PageIndex{1}\)

    Let \(\Gamma\) be a circle with the center \(O\), and \(X, Y\) be two distinct points on \(\Gamma\). Then \(\triangle XPY\) is inscribed in \(\Gamma\) if and only if

    \[2 \cdot \measuredangle XPY \equiv \measuredangle XOY.\]

    Equivalently, if and only if

    \(\measuredangle XPY \equiv \dfrac{1}{2} \cdot \measuredangle XOY\) or \(\measuredangle XPY \equiv \pi + \dfrac{1}{2} \cdot \measuredangle XOY.\)

    Proof

    9.2: Inscribed angle (2)9.2: Inscribed angle (3)9.2: Inscribed angle (4)

    the "only if" part. Let \((PQ)\) be the tangent line to \(\Gamma\) at \(P\). By Theorem 9.1.1,

    \(2 \cdot \measuredangle QPX \equiv \measuredangle POX\), \(2 \cdot \measuredangle QPY \equiv \measuredangle POY.\)

    Subtracting one identity from the other, we get 9.2.1.

    "If" part. Assume that 9.2.1 holds for some \(P \not\in \Gamma\). Note that \(\measuredangle XOY \ne 0\). Therefore, \(\measuredangle XPY \ne 0\) nor \(\pi\); that is, \(\measuredangle PXY\) is nondegenerate.

    The line \((PX)\) might be tangent to \(\Gamma\) at the point \(X\) or intersect \(\Gamma\) at another point; in the latter case, suppose that \(P'\) denotes this point of intersection.

    In the first case, by Theorem 9.1, we have

    \(2 \cdot \measuredangle PXY \equiv \measuredangle XOY \equiv 2 \cdot \measuredangle XPY.\)

    Applying the transversal property (Theorem 7.3.1), we get that \((XY) \parallel (PY)\), which is impossible since \(\triangle PXY\) is nondegenerate.

    In the second case, applying the "if" part and that \(P, X\), and \(P'\) lie on one line (see Exercise 2.4.2) we get that

    \(\begin{array} {rcl} {2 \cdot \measuredangle P'PY} & \equiv & {2 \cdot \measuredangle XPY \equiv \measuredangle XOY \equiv} \\ {} & \equiv & {2 \cdot \measuredangle XP'Y \equiv 2 \cdot \measuredangle XP'P.} \end{array}\)

    Again, by transversal property, \((PY) \parallel (P'Y)\), which is impossible since \(\triangle PXY\) is nondegenerate.

    Exercise \(\PageIndex{1}\)

    Let \(X, X', Y\), and \(Y'\) be distinct points on the circle \(\Gamma\). Assume \((XX')\) meets \((YY')\) at a point \(P\). Show that

    (a) \(2 \cdot \measuredangle XPY \equiv \measuredangle XOY + \measuredangle X'OY'\);

    (b) \(\triangle PXY \sim \triangle PY'X'\);

    (c) \(PX \cdot PX' = |OP^2 - r^2|\), where \(O\) is the center and \(r\) is the radius of \(\Gamma\).

    9.2: Inscribed angle (5)

    (The value \(OP^2 - r^2\) is called the power of the point \(P\) with respect to the circle \(\Gamma\). Part (c) of the exercise makes it a useful tool to study circles, but we are not going to consider it further in the book.)

    Hint

    (a) Apply Theorem \(\PageIndex{1}\) for \(\angle XX'Y\) and \(\angle X'YY'\) and Theorem 7.4.1 for \(\triangle PYX'\).

    (b) If \(P\) is inside of \(\Gamma\) then \(P\) lies between \(X\) and \(X'\) and between \(Y\) and \(Y'\) in this case \(\angle XPY\) is vertical to \(\angle X'PY'\). If \(P\) is outside of \(\Gamma\) then \([PX) = [PX')\) and \([PY) = [PY')\). In both cases we have that \(\measuredangle XPY = \measuredangle X'PY'\).

    Applying Theorem \(\PageIndex{1}\) and Exercise 2.4.2, we get that

    \(2 \cdot \measuredangle Y'X'P \equiv 2 \cdot \measuredangle Y'X'X \equiv 2 \cdot \measuredangle Y'YX \equiv 2 \dot \measuredangle PYX.\)

    According to Theorem 3.3.1, \(\angle Y'X'P\) and \(\angle PYX\) have the same sign; therefore \(\measuredangle Y'X'P = \measuredangle PYX\). It remains to apply the AA similarity condition.

    (c) Apply (b) assuming \([YY']\) is the diameter of \(\Gamma\).

    Exercise \(\PageIndex{2}\)

    Three chords \([XX']\), \([YY']\), and \([ZZ']\) of the circle \(\Gamma\) intersect at a point \(P\). Show that

    \(XY' \cdot ZX' \cdot YZ' = X'Y \cdot Z'X \cdot Y'Z.\)

    9.2: Inscribed angle (6)

    Hint

    Apply Exerciese \(\PageIndex{1} b three times.

    Exercise \(\PageIndex{3}\)

    Let \(\Gamma\) be a circumcircle of an acute triangle \(ABC\). Let \(A'\) and \(B'\) denote the second points of intersection of the altitudes from \(A\) and \(B\) with \(\Gamma\). Show that \(\triangle A'B'C\) is isosceles.

    9.2: Inscribed angle (7)

    Hint

    Let \(X\) and \(Y\) be the foot points of the altitudes from \(A\) and \(B\). Suppose that \(O\) denotes the circumcenter.

    By AA condition, \(\triangle AXC \sim \triangle BYC\). Then

    \(\measuredangle A'OC \equiv 2 \cdot \measuredangle A'AC \equiv - 2 \cdot \measuredangle B'BC \equiv - \measuredangle B'OC.\)

    By SAS, \(\triangle A'OC \cong \triangle B'OC\). Therefore, \(A'C = B'C\).

    Exercise \(\PageIndex{4}\)

    Let \([XY]\) and \([X'Y']\) be two parallel chords of a circle. Show that \(XX' = YY'\).

    Exercise \(\PageIndex{5}\)

    Watch “Why is pi here? And why is it squared? A geo- metric answer to the Basel problem” by Grant Sanderson. (It is available on YouTube.)

    Prepare one question.

    9.2: Inscribed angle (2024)

    FAQs

    How do you answer an inscribed angle? ›

    The measure of an inscribed angle is half the measure of the intercepted arc. That is, m ∠ A B C = 1 2 m ∠ A O C . This leads to the corollary that in a circle any two inscribed angles with the same intercepted arcs are congruent.

    How many 1 angles does an angle that measures 9 turn through? ›

    An angle with a measure of 9° can be described as formed by 9 rays with a common endpoint, the same size as 9 one-degree angles, and it turns through 9 one-degree angles.

    What is the rule for inscribed angles? ›

    The Inscribed Angle Theorem states that the measure of an inscribed angle is half the measure of its intercepted arc. Inscribed angles that intercept the same arc are congruent.

    Do inscribed angles add up to 180? ›

    As a consequence of the theorem, opposite angles of cyclic quadrilaterals sum to 180°; conversely, any quadrilateral for which this is true can be inscribed in a circle. As another example, the inscribed angle theorem is the basis for several theorems related to the power of a point with respect to a circle.

    How do you find the missing angle of an inscribed angle? ›

    Step 1: Determine the arc that corresponds to the inscribed angle. Step 2: Use your knowledge of circles and arc measures to determine the missing measure for the intercepted arc. Step 3: Determine the measure of the inscribed angle using the formula measure of angle = half of the measure of its intercepted arc.

    What is the 4 theorem of inscribed angle? ›

    The inscribed angle theorem mentions that the angle inscribed inside a circle is always half the measure of the central angle or the intercepted arc that shares the endpoints of the inscribed angle's sides.

    What is the inscribed angle theorem grade 9? ›

    The inscribed angle theorem says that an inscribed angle is half the intercepted arc measure. The central angle that subtends the same arc, however, has the same measure as such arc. Therefore, an inscribed angle is half the measure of the corresponding central angle.

    Are all inscribed angles equal? ›

    Inscribed angles subtended by the same arc are equal. If a pair of arcs in the same circle are congruent, their inscribed angles are equal. If a pair of circles are congruent, then inscribed angles subtended by congruent arcs, or arcs of equal measure, will be equal.

    How to find inscribed quadrilateral angles? ›

    The measure of an angle of a quadrilateral inscribed in a circle is equal to one-half of the measure of the arc of the circle that it intercepts. The measure of an arc intercepted by an angle of a quadrilateral that is inscribed in a circle is equal to two times the measure of the inscribed angle.

    What angles must add to be 180? ›

    Two angles that add up to 180 degrees are called supplementary angles. In the same way, as with complementary angles, supplementary angles are exactly two angles, and they may be adjacent or non-adjacent. In mathematics, a theorem is a statement that has been proved or can be proved.

    How will you know that an inscribed angle is a right angle? ›

    Corollary (Inscribed Angles Conjecture III ): Any angle inscribed in a semi-circle is a right angle. Proof: The intercepted arc for an angle inscribed in a semi-circle is 180 degrees. Therefore the measure of the angle must be half of 180, or 90 degrees. In other words, the angle is a right angle.

    What are the steps for inscribed angle? ›

    Step 1: Identify the intercepted arc of the central angle and the intercepted arc of the inscribed or circ*mscribed angle. Ensure they are the same. Step 2: For an inscribed angle, the measure of the angle is one-half of the measure of the central angle.

    How to solve a circ*mscribed angle? ›

    Circ*mscribed Angles

    We say an angle is circ*mscribed if its sides are both tangent to the circle. The measure of a circ*mscribed angle is equal to 180 minus the measure of the central angle that intercepts the same arc.

    What is the inscribed angle theorem simplified? ›

    The inscribed angle theorem mentions that the angle inscribed inside a circle is always half the measure of the central angle or the intercepted arc that shares the endpoints of the inscribed angle's sides.

    Top Articles
    How to Pay Off Debt Faster
    Upstart
    Craigslist Free En Dallas Tx
    Mackenzie Rosman Leaked
    Voordelige mode in topkwaliteit shoppen
    Alpha Kenny Buddy - Songs, Events and Music Stats | Viberate.com
    Trade Chart Dave Richard
    Tv Schedule Today No Cable
    Planets Visible Tonight Virginia
    [PDF] INFORMATION BROCHURE - Free Download PDF
    Readyset Ochsner.org
    Dumb Money
    Babyrainbow Private
    D10 Wrestling Facebook
    Theresa Alone Gofundme
    Straight Talk Phones With 7 Inch Screen
    Palm Coast Permits Online
    Loft Stores Near Me
    Governor Brown Signs Legislation Supporting California Legislative Women's Caucus Priorities
    Aspenx2 Newburyport
    Trivago Myrtle Beach Hotels
    Die 8 Rollen einer Führungskraft
    Narragansett Bay Cruising - A Complete Guide: Explore Newport, Providence & More
    Martin Village Stm 16 & Imax
    Rvtrader Com Florida
    Flaky Fish Meat Rdr2
    Matlab Kruskal Wallis
    404-459-1280
    Craigslist Lakeside Az
    Viewfinder Mangabuddy
    Stafford Rotoworld
    When His Eyes Opened Chapter 2048
    Infinite Campus Parent Portal Hall County
    PruittHealth hiring Certified Nursing Assistant - Third Shift in Augusta, GA | LinkedIn
    18 terrible things that happened on Friday the 13th
    Download Diablo 2 From Blizzard
    The Realreal Temporary Closure
    Wal-Mart 140 Supercenter Products
    Craigslist en Santa Cruz, California: Tu Guía Definitiva para Comprar, Vender e Intercambiar - First Republic Craigslist
    Ig Weekend Dow
    Hovia reveals top 4 feel-good wallpaper trends for 2024
    Ghareeb Nawaz Texas Menu
    Best Conjuration Spell In Skyrim
    Walmart Careers Stocker
    Aurora Southeast Recreation Center And Fieldhouse Reviews
    Hughie Francis Foley – Marinermath
    Grand Park Baseball Tournaments
    Publix Store 840
    M Life Insider
    Read Love in Orbit - Chapter 2 - Page 974 | MangaBuddy
    Coldestuknow
    Emmi-Sellers
    Latest Posts
    Article information

    Author: Fr. Dewey Fisher

    Last Updated:

    Views: 6594

    Rating: 4.1 / 5 (42 voted)

    Reviews: 81% of readers found this page helpful

    Author information

    Name: Fr. Dewey Fisher

    Birthday: 1993-03-26

    Address: 917 Hyun Views, Rogahnmouth, KY 91013-8827

    Phone: +5938540192553

    Job: Administration Developer

    Hobby: Embroidery, Horseback riding, Juggling, Urban exploration, Skiing, Cycling, Handball

    Introduction: My name is Fr. Dewey Fisher, I am a powerful, open, faithful, combative, spotless, faithful, fair person who loves writing and wants to share my knowledge and understanding with you.